A note on the large spectrum and generalized Riesz products

I wrote a short note entitled Covering the large spectrum and generalized Riesz products that simplifies and generalizes the approach of the first few posts on Chang’s Lemma and Bloom’s variant.

The approximation statement is made in the context of general probability measures on a finite set (though it should extend at least to the compact case with no issues). The algebraic structure only comes into play when the spectral covering statements are deduced (easily) from the general approximation theorem. The proofs are also done in the general setting of finite abelian groups.

Comments are encouraged, especially about references I may have missed.

3 thoughts on “A note on the large spectrum and generalized Riesz products

  1. A very beautiful and short proof of Chang’s and Bloom’s lemma. I just want to ask why η should satisfy $η<1/e^3$ in Theorem 2.1? Is this condition necessary?

  2. That condition is there just so that log log(1/eta) is well-defined. On the other hand, the theorem is only non-trivial for eta < 1, so this is not really a restriction (since there is already a leading constant factor of 9).

  3. Thanks very much for your clarifications Prof James. I also think so and belive your approximation theorem in this paper have more applications.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s